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Abstract
A phenomenological generalization of the well known Vinen equation for the
evolution of vortex line density in superfluid counterflow turbulence is proposed.
This generalization includes nonlinear production terms in the counterflow
velocity and corrections depending on the diameter of the tube. The equation
provides a unified framework for the various phenomena (stationary states and
transitions) present in counterflow superfluid turbulence: in fact, it is able to
describe the laminar regime, the first-order transition from laminar to turbulent
TI state, the two turbulent states, the transition from TI to TII turbulent states,
and it yields a slower decay of the counterflow turbulence than the classical local
description. Finally, a comparison with the experimental results shows that the
contribution of the new terms is prevalent in the laminar and in the turbulent TI
regime, while in the fully developed turbulent TII regime the equation reduces
to the original Vinen equation.

1. Introduction

The description of superfluid turbulence is a stimulating challenge for statistical physics and
hydrodynamics. Superfluid turbulence can be understood in terms of a random tangle of
quantized vortex lines in (the superfluid component of) liquid helium II [1–4]. In experiments
where the turbulence is generated by thermal counterflow in a tube of circular cross section,
the vortex line density in such a tangle is observed to develop from a low-density state (TI) to
a higher-density state (TII) that can be associated with the homogeneous state [5, 6]. In some
occasions, one observes that the transition from laminar to turbulent regimes admits metastable
laminar regions [5, 6].

In his pioneering work in this field, following a suggestion of Feynman [7], Vinen [8]
identified the dissipation associated with the turbulence with the mutual friction between the
vortex lines and the normal-fluid component and derived his famous evolution equation for
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L, the average vortex line length for unit volume (briefly called vortex line density), using the
known results concerning the dynamics of a single vortex line and the analogy with classical
turbulence. This equation describes the second turbulent regime satisfactorily, but not the
laminar one and the two transitions (laminar–TI and TI–TII). In a previous work [9] a first
generalization of Vinen’s equation for the evolution of vortex tangle in superfluid turbulence
has been proposed, taking into account the influence of a non-vanishing ratio between the
average separation between vortex lines δ � L−1/2 and the diameter d of the channel. This
equation allows us to describe the transition from TI to TII turbulent regimes, but not the
laminar–TI transition.

Our aim here is to write an equation for the evolution of vortex tangle in superfluid
turbulence, able to describe the three regimes observed in counterflow, in tubes of diameter d ,
namely, a laminar regime at low counterflow velocity V , followed by two turbulent regimes TI
and TII at increasing values of V . By simple dimensional arguments and outlining a possible
physical basis, an evolution equation for the vortex line density L is proposed, which includes
both Vinen’s correction to the vortex generation term depending on the diameter d of the tube
and Vinen’s alternative contribution (which is quadratic in the counterflow velocity V ); further,
in order to describe the transition from TI to TII states at the second critical velocity, a steep
change in the original Vinen production term is introduced. The generalized equation is able
to describe in a simple way the three stationary regimes observed in counterflow experiments,
in contrast to Vinen’s equation, which is restricted to fully developed counterflow turbulence
(turbulent TII regime) and it yields a slower decay of the counterflow turbulence than the
classical local description.

Our description of these phenomena (stationary states and transitions) is purely
phenomenological, but it provides, for the first time, at our knowledge, a unified framework
for the various phenomena present in counterflow superfluid turbulence.

We will not consider, in the paper, the influence of rotation on counterflow superfluid
turbulence and eventual phenomena of intermittence, studied in [10] and in [11].

The plan of the paper is as follows. In section 2 a brief review of counterflow superfluid
turbulence is given; in section 3 the generalized equation for the evolution of vortex line density
is written and a microscopic qualitative description of the transition phenomena is proposed.
Sections 4 and 5 are devoted to the study of the stationary solutions of the new equation and
to a comparison with experimental results. In section 6, finally, the decay of vortices in the
absence of the counterflow is studied.

2. Brief description of superfluid turbulence

A typical way to produce superfluid turbulence consists of a channel heated at a closed end,
subject to a heat flux q, exceeding a critical value qc. This experimental situation, characterized
by no net matter flow but only heat transport, is called thermal counterflow. In these experiments
a random array of vortex filaments is present, which produces a damping force, known as mutual
friction force. The measurements of vortex lines are described as giving a macroscopic average
of the vortex line length per unit volume L. There are essentially two methods to measure
the line density L in superfluid 4He: observations of temperature gradients in the channel and
observations of changes in the attenuation of the second sound waves [1–4].

The best known model of superfluid helium is the two-fluid model [12, 13], which regards
helium II as a mixture of normal fluid and superfluid, with densities ρn and ρs respectively and
velocities vn and vs respectively, with total density ρ and velocity v defined by ρ = ρs +ρn and
ρv = ρsvs + ρnvn. The normal component behaves as a normal fluid, with normal viscosity
and thermal conductivity; the superfluid component is an ideal fluid, which neither experiences
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dissipation nor carries entropy. In this framework, the superfluid turbulence is described in
terms of a random tangle of quantized vortex lines in the superfluid component of liquid
helium II.

An alternative model of superfluid helium is the one-fluid model [14] based on extended
thermodynamics [15]. In this model, the heat flux q takes the place of the relative velocity
V = vn − vs. In fact, in the two-fluid model, these two quantities are linked by the relation
q = ρsT sV, with s the entropy per unit mass and T the temperature. In this new framework the
vortex array is described by introducing a vorticity tensor Pω [11], whose trace is proportional
to the total length of vortices per unit of volume, L.

As observed by Donnelly in [1, 2], counterflow experiments have a history of many
decades, but much remains to be explained in these experiments. The best known equation
in the field of superfluid turbulence is Vinen’s equation [8], which describes the evolution of
L, the total length of vortex lines per unit volume, in counterflow situations characterized by
a relative velocity V of normal fluid with respect to superfluid component. Vinen suggested
that in homogeneous counterflow turbulence there is a balance between generation and decay
processes, which leads to a steady state of quantum turbulence in the form of a self-maintained
vortex tangle. The form of Vinen’s equation is

dL

dt
= αV L3/2 − βκL2, (2.1)

with α and β dimensionless constants and κ the quantum of vorticity, ascribed by κ = h/m,
with m the mass of the 4He atoms and h Planck’s constant (κ = 9.97 × 10−4 cm2 s−1).

Vinen’s original derivation of equation (2.1) relies on dimensional analysis and on physical,
observational and statistical ingredients. He considered homogeneous superfluid turbulence
and assumed that the time derivative dL/dt is composed of two terms:

dL

dt
=

[
dL

dt

]
f

−
[

dL

dt

]
d

, (2.2)

the first responsible for the growth of L, the second for its decay. Vinen assumes that the term
[dL/dt] f depends on the quantum of circulation κ , the instantaneous value of L and the force
f between the vortex line and the normal component, which is linked to the intensity V of the
counterflow velocity V; dimensional analysis leads to the equation [8, 16, 17][

dL

dt

]
f

= κL2φ f

[
V

κL1/2

]
, (2.3)

where φ f is some dimensionless function of its dimensionless argument. The determination
of this function is one of the most delicate problems of the phenomenological theory [16, 17].
Vinen, by analogy with the growth of a vortex ring, assumed that the dimensionless function
φ f depends linearly on its argument, obtaining[

dL

dt

]
f

= αV L3/2, (2.4)

with α a dimensionless constant. Another possibility is to assume that φ f is quadratic on its
arguments [17], which leads to[

dL

dt

]
f

= α′ V 2

κ
L . (2.5)

This form of the term responsible for the growth of vortices is known as Vinen’s alternative
production term. This latter possibility is discussed at length in [17].
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The form of the [dL/dt]d term, responsible for the vortex decay, was determined by Vinen
in analogy with classical turbulence. He assumed that Feynman’s model of vortex breakup is
analogous to Kolmogorov’s cascade in classical turbulence, obtaining[

dL

dt

]
d

= −βκL2 with β = χ2

2π
, (2.6)

χ2 being a dimensionless constant of the order of unity [8, 17].
From (2.4) and (2.6) Vinen’s equation (2.1) follows immediately, while, using

equation (2.5) for the production term, one obtains the alternative equation:

dL

dt
= −βκL2 + α′ V 2

κ
L . (2.7)

Both Vinen’s original equation (2.1) and the alternative form (2.7) describe the dynamics
of the second turbulent regime satisfactorily, but not the other ones. In fact, the stationary
solutions of equation (2.1) are

L = 0 and L =
(
αV

κβ

)2

, (2.8)

while the ones of equation (2.7) are

L = 0 and L = α′V 2

βκ2
. (2.9)

The solution L = 0 corresponds to the laminar regime, in which vortices are absent,
and the other solutions to the turbulent regime. However, a simple stability analysis (see
section 3.1) shows that in both equations (2.1) and (2.7) only the second solution is stable, for
all values of the counterflow velocity V . This is not in agreement with experiments, where
three successive states, laminar, turbulent I and turbulent II, are observed and there is also
present a metastable laminar region. This shortcoming can be understood by observing that
Vinen considered homogeneous superfluid turbulence. As remarked in [17], homogeneous
turbulence can exist only in the case when the characteristic interline spacing, δ ∼ L−1/2,
is much smaller than the characteristic size, d , of the container. Therefore Vinen’s original
equation cannot describe the laminar and the turbulent TI regime, where L is relatively small.

In his final version, Vinen [18] introduced corrections connected with the dimension d of
the channel, able to describe some features of the laminar–turbulent transition. This equation,
however, is not able to describe the TI–TII transition. In [9], a different modification of
Vinen’s equation has been proposed, including corrections, both in the production and in the
destruction term, depending on the ratio L−1/2/d , which allows us to describe, in relatively
good agreement with experimental results, the TI–TII transition, but it is not able to describe
the laminar–turbulent transition.

3. Generalized vortex line density evolution equation

Our aim in this paper is to make a phenomenological extension of Vinen’s equation (2.1)
in order to write a single evolution equation able to describe the three stationary regimes
observed in counterflow, in tubes of diameter d: a laminar regime at low V , the transition
at the counterflow velocity Vc1 from the laminar to the turbulent TI regime, the metastability
region Vc1 < V < V ′

c1, the two turbulent regimes TI and TII at increasing values of V . In
particular, we will consider two modifications: (a)we will include nonlinear production terms
in the counterflow velocity V and (b) we will include corrections depending on L−1/2/d ,
including the effects of the size of the capillary.



Generalization of Vinen’s equation including transition to superfluid turbulence 4427

The nonlinear terms depending on V are introduced in order to describe the transitions.
The motivation to include the diameter d of the capillary are twofold: phenomenological and
theoretical. First, observe that the experimental results (critical velocities Vc1 and Vc2 and
stationary states of turbulence) depend on the tube dimension. In particular, the dimensionless
quantity L−1/2/d seems fundamental in the studies of superfluid turbulence. Indeed this term
expresses the ratio of the average separation between vortices, δ ∼ L−1/2, and the diameter of
the channel. This term is negligible for fully developed turbulence, when L is high, but it is
important when L is small; thus it is logical to expect that it will play a role in the transition
from laminar to turbulent regimes.

The correction in δ/d may have some analogy with the presence of nonlocal terms in
higher-order hydrodynamics, where the ratio l/d is considered, l being the mean free path.
In this way, by using the Chapman–Enskog formalism or Grad formalism one obtains higher-
order terms in l/d leading to higher-order hydrodynamics [15, 19]. Such terms are also of
much current interest in molecular hydrodynamics [20] aiming to generalize hydrodynamics
to the range of perturbations of wavelength comparable to the average interparticle separation.
Since the mean-free path of the vortices in the tangle is of the order of their average separation,
the mentioned analogy seems reasonable.

From a microscopic perspective, a possible motivation of the presence of d in the evolution
equation of superfluid turbulence can be found in considerations relative to the phenomenon
of vortex pinning and depinning [21, 1–4]. Vortices move and experience a reaction from
the normal component; this couples the superfluid and the normal components and produces
a ‘mutual friction’ between them. When the turbulence is developed, a tangle of quantized
vortices is present in the channel. An important feature of vortex dynamics is the possibility of
vortex reconnections, which change the topology of vortex lines: when two vortex filaments
approach each other closely they reconnect [1–4]. As has been discussed in [21], in superfluid
4He the vorticity is pinning. Awschalom and Schwarz [22] have shown that pinned vortices,
presumably formed during the transition through the λ-point, are always found in the fluid,
while freely moving vortices do not live a long time: either they get trapped on suitable
prominences of the wall of the container or they lose their energy by interacting with the
elementary excitations [23–26]. Schwarz’s extensive numerical simulations [27–29] of vortex
motion is based on the idea that a pinned vortex, perched on a hemispheric protuberance of
radius b standing of a plane wall, unpins when the applied flow bends it very strongly. It then
undergoes a reconnection and escapes from the wall to free space. From all these considerations
it follows that the phenomenon of vortex pinning and unpinning is very important in the study
of superfluid turbulence evolution, especially in the description of the laminar and turbulent
TI regimes and in the transition from TI to TII turbulent regimes. We will suppose that all
the phenomena described above are responsible, on the average, for corrections depending on
δ
d ∼ 1

L1/2d in Vinen’s production and destruction terms.
The proposed equation for the evolution of vortex line density L, which we shall discuss

in this section, including corrections depending on δ
d ∼ L−1/2

d and nonlinear corrections in V ,
is

dL

dt
= α(V , d)V L3/2

[
1 − ω

L−1/2

d

]
+ α′ V 2

κ
L − βκL2

[
1 + ω′ L−1/2

d
− ω′′

(
L−1/2

d

)2
]
,

(3.1)

where α(V , d), is approximately constant in the two turbulent regimes (αI in the turbulence TI
and αII in TII), while it undergoes a steep change at the second critical velocity. Here and in
the following, for the coefficient β, linked to the vortex cascade in the reconnection processes,
we will choose expression (2.6)2 obtained by Vinen.



4428 M S Mongiovı̀ and D Jou

We have thus new terms not present in Vinen’s equation. In sections 3.1 and 3.2, we
outline a possible physical motivation for the modifications made in the production term,
while the modification of the destruction term will be discussed in more detail in section 3.3.
In the successive sections we will show how equation (3.1) is useful to describe the known
phenomenology of the three mentioned hydrodynamic regimes.

3.1. The laminar and the TI regimes

We start to study the transition from laminar to turbulent regime. This transition is a first-order
one. In it L exhibits a discontinuity of the order of L1/2d ∼ 2.5, at a critical velocity Vc1 which
depends on the diameter of the capillary as Vc1 = c1κ/d; furthermore, the laminar state with
L = 0 is found to be metastable from Vc1 to another velocity V ′

c1, not completely studied.
To describe this transition in a qualitative way, we include in Vinen’s equation (2.1)

corrections of order δ
d ∼ L−1/2

d and of order V 2, in the term responsible to the growth of
vortices, obtaining

dL

dt
= αIV L3/2

[
1 − ω

L−1/2

d

]
+ α′ V 2

κ
L − βκL2. (3.2)

αI being the value ofα(V , d) in the laminar and TI regime (observe that the term withαIωV L/d
had been considered by Vinen himself in early attempts [18, 30, 31]).

The steady-state solutions of (3.2) are L1 = 0 and

L2,3 = 1

2

αIV

βκ

[
1 ±

√
1 +

4βκ

αIV

(
α′

αI

V

κ
− ω

d

)]
. (3.3)

The solutions L2,3 (corresponding to + and − sign in (3.3), respectively) are real only for
values of V higher than

Vc1 = 4βαIω

α2
I + 4βα′

κ

d
. (3.4)

At the transition (when V = Vc1) there is a discontinuity in the value of L, which goes from
L = 0 to

L1/2
c1 = 2α2

I ω

α2
I + 4βα′

1

d
. (3.5)

The stability of these solutions may be studied from the equation for a perturbation δL of L,
given by

dδL

dt
= −

[
2βκL − 3

2
αIV L1/2 − α′ V 2

κ
+ αIω

V

d

]
δL, (3.6)

from which it follows that the solution L1 = 0 is stable up to a value of V ′
c1 given by

V ′
c1 = αIωκ

α′d
. (3.7)

The solution L2 is stable where it exists, while L3 is unstable. Further it is Vc1 < V ′
c1, as one

verifies immediately.
These results are in qualitative agreement with experiments: in fact one recovers the

dependence Vc1 ∼ κ/d and Lc1 ∼ 1/d , the discontinuity in the transition from laminar to
turbulent low-density TI regime and the existence of a metastability region of the laminar
state.
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3.2. The TI–TII transition

It has been seen that the evolution equation (3.2) describes the transition from laminar to
turbulent TI regime, namely, the critical velocity Vc1, the discontinuity of L at this value, and
the range of metastability of the laminar solution. However, it does not describe the transition
TI–TII, taking place at the second critical velocity Vc2.

In [9], a modification of Vinen’s equation has been proposed, including corrective terms,
depending on the ratio L−1/2/d . This equation allows us to describe the TI–TII transition,
although it leads to an underestimation of the critical velocity Vc2. This could indicate that the
nonlocal terms may have a form different from the one assumed in that work.

Here, to describe the TI–TII transition, we follow a different route: we introduce
heuristically a dependence on V d/κ of the coefficient α in the first term of (3.1), responsible
for the growth of L. Indeed, as we have already observed, experimentally one sees that at this
transition the coefficient α, which characterize the slope of the stationary solution, undergoes
a step from the value αI in the TI regime to a value αII in the TII regime. Therefore, the
coefficient α must depend on V , L and d . In [9] we have supposed α dependent on L and on
d; here we will suppose α dependent on V and on d , making the following assumption:

α(V , d) = αc2

(
1 + c tanh

[
A

(
V d

κ
− C

)])
, (3.8)

c, C and A being dimensionless constants in such a way that, for V � Vc2, α � αI = αc2(1−c)
and for V � Vc2, α � αII = αc2(1 +c), αc2 being the value of α(V , d) at the second transition.
The constant C is related to Vc2 by

Vc2 = Cκ

d
, (3.9)

which gives the way to measure the coefficient C , whereas 2c = αII − αI gives the size of
the step of α near Vc2. The constant A characterizes the size of the domain of V in which the
transition from αI to αII is produced.

Now, we discuss some details of the TI–TII transition and the physical motivation
for (3.8). A possible explanation of the TI–TII transition has been proposed by Melotte
and Barenghi [32]. These authors have shown that an initially laminar normal fluid may in
some circumstances become unstable in the presence of turbulent superfluid, so that both
fluids may become turbulent. This could have an effect on the observed mutual friction and it
might give rise to the observed different regimes. Therefore they infer that in the TI regime
only the superfluid component is turbulent, while in the TII regime both the superfluid and
the normal components become turbulent. However, their linear stability analysis does not
capture the correct temperature dependence [32, 18]. Furthermore, Schwarz in his numerical
simulations [27–29], which are obtained under the assumption that the flow of the normal fluid
is laminar and spatially uniform, provided an excellent confirmation of Vinen’s equation in the
TII state; so that the suggestive hypothesis by Melotte and Barenghi appears not completely
confirmed by the numerical simulations of Schwarz and experiments.

A possible different description of the phenomenon, which of course must have adequate
theoretical and experimental confirmations, which we have sketched in figure 1, can be the
following: in the laminar regime, when V < Vc1, in the channel there are present vortex
lines (the so-called ‘remnant vortices’ formed when helium was cooled through the λ-point or
during previous turbulent flows [22], figure 1(a)), which are strongly pinned to protuberances
of the walls and slightly bent by the heat flux; as the counterflow velocity grows, these lines
are bent and their length increases, even if most of them remain pinned to the channel. Helical
waves may be propagated in these (initially rectilinear) vortices which remain strongly pinned
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a b

c d

Figure 1. A sketch of how the vortices behave, following the discussion in section 3.2: (a) V = 0;
(b) laminar regime (V < V ′

c1); (c) turbulent TI regime (Vc1 < V < Vc2); (d) turbulent TII regime
(V > Vc2).

on prominences of the wall of the channel (figure 1(b)). When the counterflow velocity grows,
the separation between successive coils of these helices reduces. When the counterflow velocity
reaches the first critical velocity Vc1, in correspondence of these waves, small localized arrays
of quantized vortices appear, which result in being polarized in the (mean) direction of the
equilibrium configuration of the initial vortex (figure 1(c)). Sometimes, depending on the
initial configuration of the vortices existing in the channel in the absence of heat flux, these
localized arrays may be generated for values of V beyond Vc1, so that a region of metastability
of the laminar regime arises. In this picture, the TI turbulent regime is an inhomogeneous
and locally polarized state (roughly isotropic in the whole, or slightly non-isotropic in the
direction of the heat flux). When the counterflow reaches the critical value Vc2 this state
becomes unstable and the flow undergoes a transition to the fully developed turbulent regime
TII (figure 1(d)). The critical velocity Vc2 indicates the definitive breakdown of these localized
polarizations and the transition to the homogeneous slightly non-isotropic state TII. This is
in accord with the experimental observations [33] and computer simulations [28, 29] which
show that in counterflow turbulence the tangle is roughly isotropic or slightly non-isotropic,
and this anisotropy is independent on the counterflow velocity; it is also in accord with recent
numerical investigations, where a new form of energy cascade of helical waves on vortex
filaments is described [34], and experimental results [35] which suggest proposing Kelvin
waves as a depinning mechanism.

The transition from TI to TII, which we have modelled with the function (3.8), may be
due to the phenomenon just described. As we will see in section 4, in the laminar and in the
turbulent TI regime the interaction with the boundary is prevalent, and therefore the terms
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dependent on d , while in the TII regime the terms dependent on the heat flux, linked to the
counterflow velocity V , are prevalent. In the transition region, which has been described with
the function (3.8) there is a competition between order and disorder: 1/d contributes to the
order, i.e. to the decrease of vortex lines, while V contributes to the disorder, i.e. to their
increase.

3.3. Corrections to the destruction term

The intuitive interpretation of Vinen’s corrective term in equation (3.2) is that the vortex
generation mechanism is inactive within a characteristic distance L−1/2 from the wall. This
explains the choice of a negative sign in the new term ωL−1/2/d in the first term (production
term) on the right-hand side of (3.1); but this idea left unchanged the decay term in Vinen’s
second proposal [18]. However, the walls play an important role in vortex dynamics, and also
in the decay processes. Indeed, Schwarz, through extensive numerical simulations [28], has
studied the interaction between a single vortex line and a boundary. He has shown that this
interaction occurs when the vortex lines approach the wall closer than a characteristic distance
�c, defined as the critical distance between the loop and its image. If the distance� between a
vortex ring (or more in general, a vortex loop) and the surface is smaller than�c, the boundary
traps the vortex, which is reconnected to the surface. Further, the nearest part of a vortex loop
travelling parallel to a plane boundary is retarded by the boundary field. In contrast, if the
distance� between the surface and the vortex loop is greater than�c, the vortex motion is only
weakly affected by the boundary. Obviously, if the dimension d of the channel is small, the
influence of the walls on the decay processes cannot be neglected and we should take account
of the repeated images too. We propose therefore to modify the term responsible for the vortex
decay introducing in it a corrective term, depending on 〈�〉/d , and we substitute (2.6) with[

dL

dt

]
d

= −βκL2ψ

( 〈�〉
d

)
, (3.10)

where brackets denote average; also, in this case, we can suppose that 〈�〉 is proportional to
L−1/2: 〈�〉 = λL−1/2; therefore, we shall modify Vinen’s destruction term (2.6), introducing
in it a quadratic dependence on L−1/2/d:

[
dL

dt

]
d

= −βκL2

[
1 + ω′ L−1/2

d
− ω′′

(
L−1/2

d

)2
]
. (3.11)

With this choice of the signs in the coefficients, the destruction term is higher than the usual
Vinen proposal when the typical vortex–wall separation � is less than �c = λ(ω′/ω′′)d ,
whereas for higher values it is lower. One can write (3.11) as[

dL

dt

]
d

= −βκL2

[
1 − h

L−1/2

d

〈�−�c〉
d

]
(3.12)

where h = ω′′/λ. This provides a phenomenological description of the qualitative ideas
mentioned. Of course, equation (3.11) (or (3.12)) is only a first approximation of the unknown
function (3.10), valid if L−1/2/d is not too high. Nevertheless, as we will show in section 6, the
introduction of these corrective terms, together with the corrections in the production terms,
allows us to describe the stationary solutions in counterflow situations and produces a decay of
superfluid turbulence, in the absence of counterflow velocity, slower than that obtained using
the original Vinen equation.

From a physical point of view, the maximum value of the ratio �/d (vortex–wall
distance/diameter of the tube) is 1/2,and the proposed form for the coefficient of the destruction
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term is only indicative. However, the idea of a change of the sign of such term, becoming then
a production term not related to the velocity, could be worthy of exploration in connection
with the recent experimental discovery of a velocity-independent transition to superfluid
turbulence [36]. This is certainly an interesting topic, but it is beyond the scope of the present
paper.

4. Stationary solutions of the generalized Vinen equations

In this section we will study the stationary solutions of the full equation (3.1), which we rewrite
as

dL

dt
= −βκL2 +

[
α

(
V d

κ

)
V − ω′β

κ

d

]
L3/2 +

[
α′ V 2

κ
− ωα

(
V d

κ

)
V

d
+ ω′′β

κ

d2

]
L, (4.1)

with α expressed by (3.8), and their corresponding stability. We will show that the stationary
solutions of (4.1) are able to describe, in accord with experimental results, all the stationary
regimes present in counterflow superfluid turbulence.

To this purpose, we will perform a change of variables obtaining a dimensionless equation
for the evolution of the vortex line density. Putting

L1/2d = y, V dκ−1 = x, (4.2)

we obtain
dy

dt
= βκ

2d2

[−y3 +
(
H (x)x − ω′) y2 +

(
H ′x2 − ωH (x)x + ω′′) y

]
, (4.3)

with

H (x) = α(x)

β
, H ′ = α′

β
, (4.4)

and C = Vc2d/k = xc2.
The nonzero stationary solutions of equation (4.3) are the solutions of the equation

−y2 +
(
H (x)x − ω′) y + H ′x2 − ωH (x)x + ω′′ = 0. (4.5)

The function H (x) will assume (approximately) the value HI = αI/β in the TI regime and
(approximately) the value HII = αII/β in the TII regime. As a consequence, equation (4.5)
can be approximated with the hyperbola

−y2 +
(
HIx − ω′) y + H ′x2 − ωHIx + ω′′ = 0, (4.6)

in the TI region, and with the hyperbola

−y2 +
(
HIIx − ω′) y + H ′x2 − ωHIIx + ω′′ = 0, (4.7)

in the TII region.
The stationary solutions of equation (4.3) are the solution y1 = 0, corresponding to the

laminar regime (L1 = 0), and the two functions

y = y2(x) = 1
2

[
H (x)x − ω′ +

√
(H (x)x − ω′)2 + 4

(
H ′x2 − ωH (x)x + ω′′)] (4.8)

y = y3(x) = 1
2

[
H (x)x − ω′ −

√
(H (x)x − ω′)2 + 4

(
H ′x2 − ωH (x)x + ω′′)] (4.9)

corresponding respectively to the full turbulent regime (TI and TII) and to an unstable solution,
not observed experimentally.



Generalization of Vinen’s equation including transition to superfluid turbulence 4433

Figure 2. Qualitative description of the stationary solutions of equation (4.3), and of the
approximations made substituting solution (4.8) with the approximate solution (5.1), (5.4) and (5.9).

5. Some simplifying hypotheses

In order to determine numerical values for the coefficients appearing in equation (4.3), in
this section we will make some approximations. In figure 2 a qualitative description of the
stationary solutions of equation (4.3), and of the approximations made in this section are
shown.

5.1. The turbulent TI regime

First, we study the TI regime. Under the hypothesis that the values considered are far from
the TI–TII transition region, we can approximate equation (4.5) with equation (4.6).

Because the experimental data show that the stationary solution in the TI regime can be
approximated with a straight line, we can see that equation (4.8) is very near to the asymptote
of the equation

y = 1

2




(
HI +

√
H 2

I + 4H ′
)

x −

 HI(2ω + ω′)√

H 2
I + 4H ′

+ ω′




 = a1x − b1, (5.1)

so we obtain

H1 +
√

H 2
1 + 4H ′ = 2a1, HIω + ω′a1 = b1

√
H 2

I + 4H ′. (5.2)

In the variables V and L, equation (5.1) can be written

L1/2
I = γ1V − 1

d
b1, (5.3)

where γ1 = a1/κ . This relation has been obtained experimentally in several works, so the
values of γ1 and b1 are known from experiments. To give an idea of the order of magnitude of
the mentioned physical quantities, table 1 gives the values of a1 and b1 for T = 1.5 and 1.7 K
obtained by using the experimental data of Martin and Tough [5].

In the same way, we can say that for these values of V the function (4.9) relative to the
unstable solution, will be approximated by the straight line

y = 1

2


−

(√
H 2

I + 4H ′ − HI

)
x +


 HI(2ω + ω′)√

H 2
I + 4H ′

− ω′




 = −mx + n, (5.4)
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Table 1. Values of a1, b1, a2, b2 and of xc1 and xc2, obtained from the data reported in [5].

T (K) a1 b1 a2 b2 xc1 xc2

1.5 0.076 7.25 0.139 9.99 127.07 219
1.7 0.091 6.92 0.176 8.18 97.74 186

so we obtain √
H 2

1 + 4H ′ − H1 = 2m, HIω + ω′m = n
√

H 2
I + 4H ′. (5.5)

From equations (5.1) and (5.5) one obtains, finally,

HI = a1 − m, H ′ = a1m, ω′ = b1 − n, ω = a1n + b1m

a1 − m
. (5.6)

The two straight lines (5.1) and (5.4) meet in the centre (x1, y1) of the hyperbola (4.6); this
point is very near to the point (xc1, yc1) corresponding to the values of V and L characterizing
the transition to turbulent regime. If, in a first approximation, we suppose that in this region
the hyperbola degenerates into the two straight lines of equations (5.1) and (5.5), one has

xc1 = x1 = b1 + n

a1 + m
, yc1 = y1 = a1n − b1m

a1 + m
, (5.7)

the straight line (5.4) contains the end-point (x ′
c1, 0) of the metastability region of the laminar

regime, the coefficient ω′′ assumes the value ω′′ = b1n and it results that

m = y1

x ′
c1 − x1

, n = x ′
c1y1

x ′
c1 − x1

> 0. (5.8)

In this first rough comparison with experimental results we will make this hypothesis.

5.2. The turbulent TII regime

The next question is how turbulence II behaves for high values of L, i.e. in the asymptotic
fully developed TII regime. If the values considered are far from the transition region, we can
approximate equation (4.5) with equation (4.7). We determine, therefore, the equation of the
asymptote with positive slope of hyperbola (4.7). We get

y = 1

2




(
HII +

√
H 2

II + 4H ′
)

x −

 HII(2ω + ω′)√

H 2
II + 4H ′

+ ω′




 = a2x − b2, (5.9)

so we obtain

HII +
√

H 2
II + 4H ′ = 2a2, HIIω + ω′a2 = b2

√
H 2

II + 4H ′. (5.10)

In the variables V and L, equation (5.10) is written

L1/2
II = γ2V − 1

d
b2, (5.11)

where γ2 = a2/κ . Again, this form of L
1
2 is well documented in the literature as giving a good

description of experimental results. Table 1 gives the values of a2 and b2 for T = 1.5 and
1.7 K as obtained by data of Martin and Tough [5].

From (5.10)1, using equations (5.6), we obtain the value of H (x) in the asymptotic
turbulent TII regime:
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Table 2. Values of HI, HII, H ′, ω, ω′ and ω′′ from this work, obtained from the data reported
in [5].

T (K) HI HII H ′ ω ω′ ω′′

1.5 0.0664 0.134 0.000 725 5.178 3.634 25.1
1.7 0.0830 0.172 0.000 731 3.560 4.259 17.3

HII = a2 − a1

a2
m, (5.12)

while (5.10)2 furnish a link between the parameter b2 and the other coefficients. Using (5.6)
and (5.10), one obtains the following equation in the unknowns m and n:

(a2
2 − a1m)(a1n + b1m)− (a2

2 + a1m)(a1 − m)b2 + a2
2(b1 − n)(a1 − m) = 0. (5.13)

Substituting in this latter equation expressions (5.8) of m and n, we obtain finally the
end-point x ′

c1 of the metastability region, as a function of the quantities a1, b1, a2, b2,
which are known from experimental data and of the coordinates of the centre (x1, y1) of
the hyperbola (4.6):

x ′
c1 = x1 + y1 K (5.14)

where K is the positive solution of

a1a2
2 K 2 − y1(y1 + b1)(a

2
2 − a2

1)K − (a2
2 − a2

1)y
2
1 x1 − a1(b2 − b1)y

2
1 = 0. (5.15)

Choosing, in a first approximation, x1 = xc1 (and y1 = a1x1 − b1), though being aware that
the result obtained will not be accurate, using the experimental data by Martin and Tough [5],
we have calculated the value of x ′

c1, furnished by equation (5.14). Finally, using this result,
we have determined the values of m and n and of the coefficients HI, HII, H ′, ω and ω′. These
values are reported in table 2.

In figure 3 are reported the experimental data of [5] and our theoretical predictions; for
the coefficient A we have taken A = 0.05 at T = 1.5 K and A = 0.25 at T = 1.7 K.

Taking in mind the simplifying hypotheses made in this section, the good agreement
between our macroscopic description and experimental observations suggest that the proposed
phenomenological model is a good approximation of a theoretical unknown model, which, in
the approximations made, ought to reduce itself to equation (4.1).

5.3. Approximate equations in the turbulent TI and TII regimes

If we neglect the metastability of the laminar regime and the small step of L at the critical
velocity Vc1, we can approximate equation (4.1) with two simpler equations, which separately
describe the two regimes TI and TII.

Recalling that in the TI region the hyperbola (4.6) is very near to the asymptotes (5.1)
and (5.4), we can approximate equation (4.3) in the following way:

dy

dt
� βκ

2d2
[−y(y − a1x + b1)(y + mx − n)] . (5.16)

We can substitute the function (y + mx − n), which varies very little in the TI region, with a
constant c (for example the value c = yc1 = L1/2

c1 d). We obtain, in this way,

dy

dt
� yc1

βκ

2d2
[−y(y − a1x + b1)] , (5.17)
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Figure 3. y = L1/2d as a function of x = V dκ−1 at T = 1.5 and 1.7 K. Data are from Martin and
Tough [5]. Lines are determined from this work (equation (4.8) with A = 0.05 at T = 1.5 K and
A = 0.25 at T = 1.7 K). The (meta)stability region of the laminar regime is also indicated.

with a1 and b1 expressed by equations (5.2). In the variables L and V , equation (5.17) can be
written

dL

dt
� βκL1/2

c1

[
−L3/2 +

(
γ1V − b1

d

)
L

]
, (5.18)

with γ1 = a1/κ . This equation differs very little from the equation
dL

dt
� βκ

[
−L2 +

(
γ1V − b1

d

)
L3/2

]
, (5.19)

proposed by Vinen in [19], and has the same stationary solution (5.3).
We will finally determine a simplified equation for the evolution of L in the asymptotic

fully developed TII regime. For high values of L and V , we can substitute α(x) with its value
αII in the TII regime and we can neglect in (4.1) the term depending on the dimension d of the
tube, thus obtaining the following approximate equation:

dL

dt
= −βκL2 + αIIV L3/2 + α′ V 2

κ
L . (5.20)

The stationary solution of this equation is

L1/2 =
αII +

√
α2

II + 4βα′

2β

V

κ
=

HII +
√

H 2
II + 4H ′

2

V

κ
. (5.21)
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Observe that (5.21) modifies the coefficient in the solution (2.8) of Vinen’s original
equation (2.1), introducing in it the coefficient α′. A glance at the values of HII and H ′
reported in table 2 shows that, in the TII regime, the influence of the coefficient α′, linked to
the quadratic term in equation (4.1), is negligible, and we recover Vinen’s original equation.

6. Vortex decay towards a quiescent state

As a new illustration of the possible physical interest of (3.1), we consider the decay of vorticity
in counterflow superfluid turbulence, after the heat flux, proportional to V , is suddenly set to
zero. According to Vinen’s equation (2.1), such decay is described by

dL

dt
= −βκL2, (6.1)

thus leading to

1

L(t)
= 1

L0
+ βκ t . (6.2)

This solution corresponds to the decay of a homogeneous vortex tangle, which occurs
when L is high. However, comparison with experimental data [37] indicates that the decay
of L is much slower than this prediction. We will study here how nonlocal terms in L1/2/d ,
increasingly important as L is lowered, may contribute to the mentioned slowing down of the
decay. With this aim, we now study decay processes using equation (3.1), which is a better
model to describe nonhomogeneous vortex decay.

When V = 0, equation (3.1) leads to

dL

dt
= −βκL2

[
1 + ω′ L−1/2

d
− ω′′

(
L−1/2

d

)2
]
. (6.3)

Putting

z = 1

L1/2d
, ω′ = γ2 − γ1, ω′′ = γ1γ2 (γ1 > 0, γ2 > 0), (6.4)

the solution of equation (6.3) is

γ2 ln |1 − γ1z| + γ1 ln |1 + γ2z| = −γ1γ2(γ1 + γ2)
βκ

2d2
t + c, (6.5)

where γ1 + γ2 = √
ω′2 + 4ω′′. Denoting with L0 the initial value of L, one obtains, therefore,

ln

∣∣∣∣∣∣
1 − γ1

1
dL1/2

1 − γ1
1

dL1/2
0

∣∣∣∣∣∣
γ2

∣∣∣∣∣∣
1 + γ2

1
dL1/2

1 + γ2
1

dL1/2
0

∣∣∣∣∣∣
γ1

= −γ1γ2(γ1 + γ2)
βκ

2d2
t . (6.6)

The left-hand side of (6.6), for small values of z (i.e. for high values of L), becomes
− 1

2γ1γ2(γ1 + γ2)z2; one obtains, therefore, the solution

1

L
� 1

L0
+ βκ t . (6.7)

As one sees, for small values of t , equation (6.7) coincides with (6.2).
For higher values of t , to second order in z, the solution of (6.3) is

z2 � 1

B

[
1 − c1 exp

(
− B

d2
βκ t

)]
, (6.8)
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Table 3. Values of β from [37] and of yc1 from [5]. Values of B , z∞ and y∞ = L1/2∞ /d from this
work.

T (K) β yc1 B z∞ L−1∞ y∞ = d L1/2∞

1.5 0.78 ∼2.5 5.36 0.285 0.000 81 3.51
1.7 1.30 ∼2.5 4.70 0.393 0.001 54 2.52

where we have put γ1γ2(γ1 + γ2) = ω′′√ω′2 + 4ω′′ = 2B . The numerical values for B have
been reported in table 3. One obtains for L,

1

L
�

(
1

L0
− d2

B

)
exp

(
− B

d2
βκ t

)
+

d2

B
. (6.9)

Finally, we observe that physical solutions z = z(t) of equation (6.3) (implicitly defined
by (6.6)) have the non-vanishing asymptotic value

z∞ = ω′ +
√
ω′2 + 4ω′′

2ω′′ . (6.10)

The values of z∞ and the corresponding values of L∞, obtained using those reported in
table 2 for ω′ and ω′′, are shown in table 3.

The fact that the asymptotic value of L is different from zero is a satisfactory feature in
comparison with experimental data; in fact, it is known that, after the decay, a small fraction
of vortices still survives, pinned to the walls.

Recall now that at the transition laminar → turbulence (in stationary counterflow) there
is a discontinuity in the value of L, which goes from L = 0 to L1/2

c1 = yc1/d . The asymptotic
values of the quantity y = L1/2d and the experimental values of yc1 determined by Martin and
Tough [5] are reported in table 3. As one sees, there is a sufficient agreement between values
of y∞ and values of yc1, especially at T = 1.7 K.

The plots of the solution (6.6) of (6.3), choosing as initial point the value 1
L0

=
1.52×10−6 cm2 at T = 1.5 K (corresponding to y0 = 81) and the value 1

L0
= 1.13×10−6 cm2

at T = 1.7 K (corresponding to y0 = 94) at T = 1.7 K, are reported in figure 4.
As has been shown in equation (6.10) and in figure 4, a small number of vortices are

always present in the channel. The possibility that pinned vortices, formed during the transition
through the λ-point, are always found in the fluid, also in the absence of turbulence, has been
advanced in the literature [22, 1] and will be explored in a further work, as they may play a
relevant role as initiators of turbulence.

According to Schwarz and Rozen [37], the slow decay may be related to viscous effects in
the normal fluid which, during its deceleration, is not immediately followed by the superfluid.
This produces a small difference between vn and vs capable of sustaining the vortex tangle
for a long time. Recall that the characteristic time of decay of a viscous fluid in a channel
of diameter d is of the order of τ = d2

ν
, ν being its kinematic viscosity. In equation (3.1),

an analogous slow relaxation could be associated to the last term, with a characteristic time
τ ′ = d2

κβω′′ . Thus here, κβω′′ plays a role similar to the kinematic viscosity of a normal fluid
and it could yield a behaviour for the decay analogous to the one suggested by Schwarz and
Rozen [37], following the same scaling with d as viscous effects.

7. Conclusions

In summary, we have indicated in this paper that a direct extension of Vinen’s original
equation greatly enlarges the ability to describe the phenomena found in superfluid counterflow
experiments. The suggested generalization (3.1) introduces nonlinear terms in the counterflow
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Figure 4. Plots of the solution (6.6) of equation (6.3) (1/L as function of t), at T = 1.5 K and
T = 1.7 K, using the values of ω′, ω′′ and β reported in tables 2 and 3. The initial values are

1
L0

= 1.52 × 10−6 cm2 at T = 1.5 K and 1
L0

= 1.13 × 10−6 cm2 at T = 1.7 K. The straight line
is solution (6.2).

velocity V and incorporates corrections depending on δ/d , δ being the average intervortex
separation and d the diameter of the channel. This allows us to describe the laminar regime
(L = 0) including the metastability region, the transition from laminar regime to turbulent
TI regime (characterized by the critical value Vc1 of the velocity, and the value Lc1 of the
discontinuity in the line density) and the dependence of L with V and d for high values of
L, namely, for well-developed turbulence TII regime. The transition from TI to TII regimes
is phenomenologically described introducing a steep variation in a coefficient. Furthermore,
the inclusion of corrective terms depending on δ/d in the destruction term of Vinen’s equation
yields a slower decay of the counterflow turbulence than the classical local description, where
such a ratio is negligible.

The inclusion of d into the dynamic equations for turbulence cannot be justified only on
dimensional arguments or on analogies with higher-order hydrodynamics, but on the physical
basis provided by the pinning and the unpinning of vortex lines on the surface on the tube.
So far a sufficiently detailed quantitative information of these phenomena is not available,
and it is thus not possible to justify on a microscopic basis the new terms in (3.1). For the
moment, their reliability must be tested by comparison of their predictions with experimental
results.
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However, we feel that the generalized equation (3.1) is a useful and natural extension
of Vinen’s original equation, which deserves some interest in view of its wider range of
applications, and which enhances the relevance of Vinen’s equation which, in this most general
setting, shows more clearly its limits of validity. The final test for such a generalized equation
will be its practical usefulness to describe experiments.
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